Проектная работа на тему:
«Математика в Древней Греции»
1) Понятие древнегреческая математика охватывает достижения грекоязычных математиков, живших в период между VI веком до н. э. и V веком н. э.
2) Математика как наука родилась в Древней Греции. В странах-современниках Эллады математика использовалась либо для обыденных нужд (подсчёты, измерения), либо, наоборот, для магических ритуалов, имевших целью выяснить волю богов ( астрология , нумерология и т. п.). Греки подошли к делу с другой стороны: они выдвинули тезис « Числа правят миром ». Или, как сформулировал эту же мысль Галилей два тысячелетия спустя: « книга природы написана на языке математики ».
3) Греки проверили справедливость этого тезиса в тех областях, где сумели: астрономия , оптика , музыка , геометрия , позже — механика . Всюду были отмечены впечатляющие успехи: математическая модель обладала неоспоримой предсказательной силой.
Введение:
Бо́льшая часть античных сочинений по математике не дошла до наших дней и известна только по упоминаниям позднейших авторов и комментаторов, в первую очередь Паппа Александрийского (III век), Прокла (V век), Симпликия (VI век) и др. Среди сохранившихся трудов в первую очередь следует назвать «Начала» Евклида и отдельные книги Аристотеля , Архимеда , Аполлония и Диофанта .
Источники:
Попп Александрийский
Вплоть до VI века до н. э. греческая математика ничем не выделялась. Были, как обычно, освоены счёт и измерение. Греческая нумерация (запись чисел), как позже римская, была аддитивной, то есть числовые значения цифр складывались. Первый её вариант ( аттическая , или геродианова ) содержали буквенные значки для 1, 5, 10, 50, 100 и 1000. Соответственно была устроена и счётная доска ( абак ) с камешками. Кстати, термин калькуляция (вычисление) происходит от calculus — камешек. Особый дырявый камешек обозначал нуль.
Начальный период:
Позднее (начиная с V века до н. э.) вместо аттической нумерации была принята алфавитная — первые 9 букв греческого алфавита обозначали цифры от 1 до 9, следующие 9 букв — десятки, остальные — сотни. Чтобы не спутать числа и буквы, над числами рисовали чёрточку. Числа, большие 1000, записывали позиционно, помечая дополнительные разряды специальным штрихом (внизу слева). Специальные пометки позволяли изображать и числа, большие 10000.
Аристотель
В VI веке до н. э. начинается «греческое чудо»: появляются сразу две научные школы — ионийцы ( Фалес Милетский , Анаксимен , Анаксимандр ) и пифагорейцы . О достижениях ранних греческих математиков мы знаем в основном по упоминаниям позднейших авторов, преимущественно комментаторов Евклида , Платона и Аристотеля .
Фалес , богатый купец, хорошо изучил вавилонскую математику и астрономию — вероятно, во время торговых поездок. Ионийцы , по сообщению Евдема Родосского , дали первые доказательства нескольких простых геометрических теорем — например, о том, что вертикальные углы равны [4] . Однако главная роль в деле создания античной математики принадлежит пифагорейцам .
Фалес
-Пифагор , основатель школы — личность легендарная, и достоверность дошедших до нас сведений о нём проверить невозможно. Видимо, он, как и Фалес, много путешествовал и тоже учился у египетских и вавилонских мудрецов.
Пифагорейская школа:
Пифагор
Вернувшись около 530 г. до н. э. в Великую Грецию (район южной Италии), он в городе Кротон основал нечто вроде тайного духовного ордена. Именно он выдвинул тезис « Числа правят миром », и с исключительной энергией занимался его обоснованием.
В начале V в. до н. э., после неудачного политического выступления, пифагорейцы были изгнаны из Южной Италии, и союз прекратил своё существование, однако популярность учения от рассеяния только возросла. Пифагорейские школы появились в Афинах , на островах и в греческих колониях, а их математические знания, строго оберегаемые от посторонних, сделались общим достоянием.
Многие достижения, приписываемые Пифагору, вероятно, на самом деле являются заслугой его учеников. Пифагорейцы занимались астрономией , геометрией , арифметикой (теорией чисел) , создали теорию музыки . Пифагор первый из европейцев понял значение аксиоматического метода, чётко выделяя базовые предположения ( аксиомы , постулаты) и дедуктивно выводимые из них теоремы .
Геометрия пифагорейцев в основном ограничивалась планиметрией (судя по дошедшим до нас позднейшим трудам, очень полно изложенной) и завершалась доказательством « теоремы Пифагора ». Хотя изучались и правильные многогранники .
Была построена математическая теория музыки . Зависимость музыкальной гармонии от отношений целых чисел (длин струн) была сильным аргументом пифагорейцев в пользу исконной математической гармонии мира, спустя 2000 лет воспетой Кеплером .
Кеплер
Они были уверены, что « элементы чисел являются элементами всех вещей… и что весь мир в целом является гармонией и числом » [5] . В основе всех законов природы, полагали пифагорейцы, лежит арифметика, и с её помощью можно проникнуть во все тайны мира. В отличие от геометрии, арифметика у них строилась не на аксиоматической базе, свойства натуральных чисел считались самоочевидными, однако доказательства теорем и здесь проводили неуклонно. Понятия нуля и отрицательных чисел ещё не возникли.
Пифагорейцы далеко продвинулись в теории делимости , но чрезмерно увлеклись « треугольными », « квадратными », « совершенными » и т. п. числами, которым, судя по всему, придавали мистическое значение. Видимо, правила построения « пифагоровых троек » были открыты уже тогда; исчерпывающие формулы для них приводятся у Диофанта .
Теория наибольших общих делителей и наименьших общих кратных тоже, видимо, пифагорейского происхождения. Они построили общую теорию дробей (понимаемых как отношения ( пропорции ), так как единица считалась неделимой), научились выполнять с дробями сравнение (приведением к общему знаменателю) и все 4 арифметические операции. Пифагорейцы знали, задолго до « Начал » Евклида , деление целых чисел с остатком и « алгоритм Евклида » для практического нахождения наибольшего общего делителя . Непрерывные дроби как самостоятельный объект выделили только в Новое время, хотя их неполные частные естественным путём получаются в алгоритме Евклида
Это интересно:
После Аполлония (со II века до н. э. ) в античной науке начался спад. Новых глубоких идей не появляется. В 146 году до н. э. Рим захватывает Грецию, а в 31 году до н. э. — Александрию.
Среди немногочисленных достижений:
открытие конхоиды ( Никомед );
известная формула Герона для площади треугольника ( I век н. э.);
содержательное исследование сферической геометрии Менелаем Александрийским ;
завершение геоцентрической модели мира Птолемея ( II век н. э.), для чего потребовалась глубокая разработка плоской и сферической тригонометрии .
Необходимо отметить деятельность Паппа Александрийского ( III век ). Только благодаря ему до нас дошли сведения об античных учёных и их трудах.
На фоне общего застоя и упадка резко выделяется гигантская фигура Диофанта — последнего из великих античных математиков, «отца алгебры».
После III века н. э. александрийская школа просуществовала около 100 лет — приход христианства и частые смуты в империи резко снизили интерес к науке. Отдельные учёные труды ещё появляются в Афинах, но в 529 году Юстиниан закрыл Афинскую академию как рассадник язычества.
Упадок античной науки
Греческая математика поражает прежде всего красотой и богатством содержания. Многие учёные Нового времени отмечали, что мотивы своих открытий почерпнули у древних. Зачатки анализа заметны у Архимеда, корни алгебры — у Диофанта, аналитическая геометрия — у Аполлония и т. д. Но главное даже не в этом. Два достижения греческой математики далеко пережили своих творцов [9] .
Первое — греки построили математику как целостную науку с собственной методологией, основанной на чётко сформулированных законах логики.
Второе — они провозгласили, что законы природы постижимы для человеческого разума, и математические модели — ключ к их познанию.
В этих двух отношениях античная математика вполне современна.
Заключение:
Спасибо за внимание!