ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ
Параллельные прямые — две прямые, которые лежат в одной плоскости и не пересекаются, а || b.
Слово «параллельный» от греческого «parallelos» — идущий рядом. Знак параллельности || впервые встречается в трудах У. Оутреда (1677 г).
Аксиома параллельности:
Через точку, не лежащую на данной прямой, на плоскости можно провести только одну прямую, параллельную данной прямой.
Выделенная синим цветом часть этого утверждения — знаменитый пятый постулат Евклида. Отказ от пятого постулата ведёт к геометрии Лобачевского. В геометрии Лобачевского через точку, лежащую за прямой, проходит множество прямых, которые не пересекают данную прямую.
Иногда Аксиому параллельных прямых принимают в качестве одного из свойств параллельных прямых, но вместе с тем на ее справедливости строят другие геометрические доказательства.
Примечание. В планиметрии две различные прямые либо пересекаются, либо параллельны. В стереометрии возможен третий вариант — прямые могут не пересекаться, так как не лежат в одной плоскости. Такие прямые называются скрещивающимися.
СВОЙСТВА И ПРИЗНАКИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ
Свойства и признаки параллельных прямых:
Две прямые, параллельные третьей, параллельны.
Через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.
Если прямая пересекает одну из параллельных прямых, то она пересекает и другую.
Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
Если две параллельные прямые пересечены секущей, то:
– сумма внутренних односторонних углов равна 180°,
– накрест лежащие углы равны,
– соответственные углы равны,
Теорема Фалеса:
Если на одной из двух прямых отложено несколько равных отрезков и через их концы проведены параллельные прямые, не пересекающие другую прямую, то и на ней отложатся равные отрезки.