«Зимний фестиваль знаний 2025»

Опорный конспект по теме "Параллельные прямые"

Параллельные прямые — две прямые, которые лежат в одной плоскости и не пересекаются, а || b.

Слово «параллельный» от греческого «parallelos» — идущий рядом. Знак параллельности || впервые встречается в трудах У. Оутреда (1677 г).

Олимпиады: Английский язык 2 - 11 классы

Содержимое разработки

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ

Параллельные прямые — две прямые, которые лежат в одной плоскости и не пересекаются, а || b.

Слово «параллельный» от греческого «parallelos» — идущий рядом. Знак параллельности || впервые встречается в трудах У. Оутреда (1677 г).

Аксиома параллельности: 
Через точку, не лежащую на данной прямой, на плоскости можно провести только одну прямую, параллельную данной прямой.

Выделенная синим цветом часть этого утверждения — знаменитый пятый постулат Евклида. Отказ от пятого постулата ведёт к геометрии Лобачевского. В геометрии Лобачевского через точку, лежащую за прямой, проходит множество прямых, которые не пересекают данную прямую.

Иногда Аксиому параллельных прямых принимают в качестве одного из свойств параллельных прямых, но вместе с тем на ее справедливости строят другие геометрические доказательства.

Примечание. В планиметрии две различные прямые либо пересекаются, либо параллельны. В стереометрии возможен третий вариант — прямые могут не пересекаться, так как не лежат в одной плоскости. Такие прямые называются скрещивающимися.

СВОЙСТВА И ПРИЗНАКИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ

Свойства и признаки параллельных прямых:

  • Две прямые, параллельные третьей, параллельны.

  • Через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.

  • Если прямая пересекает одну из параллельных прямых, то она пересекает и другую.

  • Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.

  • Если две параллельные прямые пересечены секущей, то:
    – сумма внутренних односторонних углов равна 180°,
    – накрест лежащие углы равны,
    – соответственные углы равны,

Теорема Фалеса:
Если на одной из двух прямых отложено несколько равных отрезков и через их концы проведены параллельные прямые, не пересекающие другую прямую, то и на ней отложатся равные отрезки.



Получите свидетельство о публикации сразу после загрузки работы



Получите бесплатно свидетельство о публикации сразу после добавления разработки


Олимпиады «Зимний фестиваль знаний 2025»

Комплекты учителю



Качественные видеоуроки, тесты и практикумы для вашей удобной работы

Подробнее

Вебинары для учителей



Бесплатное участие и возможность получить свидетельство об участии в вебинаре.


Подробнее