МБОУ ПРУДКОВСКАЯ СШ
Рассмотрено экспертной группой МС Протокол №_____ | Принято решением педсовета протокол № от « » 2017 | Утверждаю Директор школы ---------------Петроченкова А.А Приказ № _____ |
РАБОЧАЯ ПРОГРАММА
математике
для 10 класса
на 2017-2018 учебный год
Составитель: Мартыненковой Галины Анатольевны,
учитель математики
Пояснительная записка .
Данная рабочая программа по математике для 10-11 классов (базовый уровень) реализуется на основе следующих документов:
-Федеральный компонент государственного стандарта среднего (полного) общего образования на базовом уровне РФ / Сборник нормативных документов. Математика / сост. Э.Д. Днепров, А.Г. Аркадьев. – 2-е изд. стереотип. – М.: Дрофа, 2008
-Примерная программа среднего (полного) общего образования по математике на базовом уровне, рекомендованная Министерством образования и науки РФ / Сборник нормативных документов. Математика / сост. Э.Д. Днепров, А.Г. Аркадьев. – 2-е изд. стереотип. – М.: Дрофа, 2008
Авторская программа: Программы. Математика. 5 – 6 классы. Алгебра 7 – 9 классы. Алгебра и начала математического анализа. 10 – 11 классы / авт.- сост. И.И. Зубарева, А.Г. Мордкович. – 2-е изд., испр. и доп. – М.: Мнемозина, 2009 .
Рабочие программы по учебнику Л.С,Атанасяна, В.Ф.Бутузова, С.Б.Кадомцева и др. Ба зовый уровень. Авторы-составители Н.А.Ким, Н.И.Мазурова Волгоград 2012 год и ориентирована на использование учебников: Алгебра и начала математического анализа 10 – 11 классы в двух частях для учащихся образовательных учреждений (базовый уровень) А.Г. Мордкович Москва 2012 год и Геометрия. 10 – 11 классы / составитель Т.А. Бурмистрова. – М.: Просвещение
Согласно федеральному базисному учебному плану для общеобразовательных учреждений Российской Федерации на изучение математики на ступени среднего общего образования (10 класс) отводится 4 часа в неделю, но из компонента выделен еще 1 час на усиление программы, поэтому программа для 10 класса рассчитана на 5 часов в неделю , из которых предусмотрено 3 часа в неделю на изучение курса алгебры и начал математического анализа и 2 часа на изучение геометрии. в год 170 часов. Планируется проведение 14 контрольных работ и входной контрольной работы
Задачами среднего (полного) общего образования являются развитие интереса к познанию и творческих способностей обучающегося, формирование навыков самостоятельной учебной деятельности на основе дифференциации обучения. В дополнение к обязательным предметам вводятся предметы по выбору самих обучающихся в целях реализации интересов, способностей и возможностей личности.
Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:
формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
создание условий для умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки;
создание условий для умения ясно, точно и грамотно выражать свои мысли в устной и письменной речи;
формирование умения использовать различные языки математики: словесный, символический, графический;
формирование умения свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства;
создание условий для плодотворного участия в работе в группе; умения самостоятельно и мотивированно организовывать свою деятельность;
формирование умения использовать приобретенные знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных.
В рамках указанных содержательных линий решаются следующие задачи:
систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;
совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
знакомство с основными идеями и методами математического анализа.
Результаты обучения представлены в «Требованиях к уровню подготовки», задающих систему итоговых результатов обучения, которые должны быть достигнуты всеми учащимися, оканчивающими 10-11 классы, и достижение которых является обязательным условием положительной аттестации ученика за курс 10-11 классов. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни».
Требования к уровню математической подготовки
В результате изучения курса математики 10-11 классов обучающиеся должны:
Знать
значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
вероятностный характер различных процессов окружающего мира.
Алгебра
Уметь
выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
Функции и графики
уметь
определять значение функции по значению аргумента при различных способах задания функции;
строить графики изученных функций;
описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
Начала математического анализа
уметь
вычислять производные и первообразные элементарных функций, используя справочные материалы;
исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
вычислять в простейших случаях площади с использованием первообразной;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
Уравнения и неравенства
уметь
решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
составлять уравнения и неравенства по условию задачи;
использовать для приближенного решения уравнений и неравенств графический метод;
изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
построения и исследования простейших математических моделей;
Элементы комбинаторики, статистики и теории вероятностей
уметь
решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
анализа реальных числовых данных, представленных в виде диаграмм, графиков;
анализа информации статистического характера;
Геометрия
уметь
распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
анализировать в простейших случаях взаимное расположение объектов в пространстве;
изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
строить простейшие сечения куба, призмы, пирамиды;
решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
использовать при решении стереометрических задач планиметрические факты и методы;
проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
Общеучебные умения, навыки и способы деятельности
В ходе преподавания математики в 10-11 классах, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
В данном курсе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением компетентностно-ориентированных заданий, ИКТ.
Содержание курса
Числовые функции 9 часов
Определение функции, способы ее задания, свойства функций. Обратная функция.
Цель: вспомнить общие сведения о функциях, область определения , область значения функции; сформулировать все свойства функций изученных ранее, вспомнить их геометрический смысл, договориться о порядке перечисления этих свойств при чтении графиков. Обратить внимание , что во всех определениях фигурирует числовое множество Х – подмножества области определения функции.
Тригонометрические функции 26 часа
Тождественные преобразования тригонометрических выражений. Тригонометрические функции числового аргумента: синус, косинус и тангенс. Периодические функции. Свойства и графики тригонометрических функций.
Цель: расширить и закрепить знания и умения, связанные с тождественными преобразованиями тригонометрических выражений; изучить свойства тригонометрических функций и познакомить учащихся с их графиками.
Изучение темы начинается с вводного повторения, в ходе которого напоминаются основные формулы тригонометрии, известные из курса алгебры, и выводятся некоторые новые формулы. От учащихся не требуется точного запоминания всех формул. Предполагается возможность использования различных справочных материалов: учебника, таблиц, справочников.
Особое внимание следует уделить работе с единичной окружностью. Она становится основой для определения синуса и косинуса числового аргумента и используется далее для вывода свойств тригонометрических функций и решения тригонометрических уравнений.
Систематизируются сведения о функциях и графиках, вводятся новые понятия, связанные с исследованием функций (экстремумы, периодичность), и общая схема исследования функций. В соответствии с этой общей схемой проводится исследование функций синус, косинус, тангенс и строятся их графики.
Материал учебника, касающийся тригонометрических неравенств и систем уравнений, не является обязательным
Тригонометрические уравнения. Преобразования тригонометрических выражений 25 час
Простейшие тригонометрические уравнения. Решение тригонометрических уравнений.
Цель: сформировать умение решать простейшие тригонометрические уравнения и познакомить с некоторыми приемами решения тригонометрических уравнений.
Решение простейших тригонометрических уравнений основывается на изученных свойствах тригонометрических функций. При этом целесообразно широко использовать графические иллюстрации с помощью единичной окружности. Отдельного внимания заслуживают уравнения вида , и т.п. Их решение нецелесообразно сводить к применению общих формул.
Отработка каких-либо специальных приемов решения более сложных тригонометрических уравнений не предусматривается. Достаточно рассмотреть отдельные примеры решения таких уравнений, подчеркивая общую идею решения: приведение уравнения к виду, содержащему лишь одну тригонометрическую функцию одного и того же аргумента, с последующей заменой.
Материал, касающийся тригонометрических неравенств и систем уравнений, не является обязательным.
Как и в предыдущей теме, предполагается возможность использования справочных материалов.
Производная 31 часов
Производная. Производные суммы, произведения и частного. Производная степенной функции с целым показателем. Производные синуса и косинуса. Геометрический и механический смысл производной. Применение производной к построению графиков функций и решению задач на отыскание наибольшего и наименьшего значений.
Цель: ввести понятие производной; научить находить производные функций в случаях, не требующих трудоемких выкладок.
При введении понятия производной и изучении ее свойств следует опираться на наглядно-интуитивные представления учащихся о приближении значений функции к некоторому числу, о приближении участка кривой к прямой линии и т. п.
Формирование понятия предела функции, а также умение воспроизводить доказательства каких-либо теорем в данном разделе не предусматриваются. В качестве примера вывода правил нахождения производных в классе рассматривается только теорема о производной суммы, все остальные теоремы раздела принимаются без доказательства. Важно отработать достаточно свободное умение применять эти теоремы в несложных случаях.
В ходе решения задач на применение формулы производной сложной функции можно ограничиться случаем f (kx + b): именно этот случай необходим далее.
Геометрический и механический смысл производной. Применение производной к построению графиков функций и решению задач на отыскание наибольшего и наименьшего значений.
Цель: ознакомить с простейшими методами дифференциального исчисления и выработать умение применять их для исследования функций и построения графиков.
Опора на геометрический и механический смысл производной делает интуитивно ясными критерии возрастания и убывания функций, признаки максимума и минимума.
Основное внимание должно быть уделено разнообразным задачам, связанным с использованием производной для исследования функций. Остальной материал (применение производной к приближенным вычислениям, производная в физике и технике) дается в ознакомительном плане. Остальной материал (применение производной к приближенным вычислениям, производная в физике и технике) дается в ознакомительном порядке.
Повторение 11 часов
Геометрия
Введение 5 часов
Предмет стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом.
Цель: сформировать представление учащихся об основных понятиях и аксиомах стереометрии, их использование при решении стандартных задач.
Параллельность прямых и плоскостей 19 часов
Параллельность прямых, прямой и плоскости. Взаимное расположение прямых в пространстве, угол между двумя прямыми. Параллельность плоскостей. Тетраэдр и параллелепипед.
Цель: дать учащимся систематические сведения о параллельности прямых и плоскостей в пространстве.
При изучении материала темы следует обратить внимание на часто используемый метод доказательства от противного, знакомый учащимся из курса планиметрии. Учащиеся знакомятся с различными способами изображения пространственных фигур на плоскости.
Перпендикулярность прямых и плоскостей 20 часов
Перпендикулярность прямой и плоскости, Перпендикуляр и наклонные. Угол между прямой и плоскостью. Двугранный угол. Перпендикулярность плоскостей.
Цель: дать учащимся систематические сведения о перпендикулярности прямых и плоскостей в пространстве, ввести понятие угол между прямыми и плоскостями, между плоскостями.
Многогранники 12 часов
Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.
Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.
Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.
Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрии в окружающем мире.
Сечения куба, призмы, пирамиды. Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).
Векторы в пространстве 6 часов
Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам. Координаты точки и координаты вектора. Скалярное произведение векторов
Цель: сформировать умения применять векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве.
В ходе изучения темы целесообразно использовать аналогию между рассматриваемыми понятиями на плоскости и в пространстве. Это поможет учащимся более глубоко и осознанно усвоить изучаемый материал, уяснить содержание и место векторного и координатного методов в курсе геометрии
Повторение 6 часов
Тематическое распределение часов
№ | Тема | Количество часов | Количество контрольных работ |
1 | Числовые функции
| 9 | 1 входная |
2 | Тригонометрические функции
| 26 | 3 |
3 | Тригонометрические уравнения. Преобразования тригонометрических выражений | 25 | 2 |
4 | Производная | 31 | 3 |
5 | Повторение | 11 | 1 |
6 | Введение | 5 |
|
7 | Параллельность прямых и плоскостей | 20 | 2 |
8 | Перпендикулярность прямых и плоскостей | 18 | 1 |
9 | Многогранники | 12 | 1 |
| Векторы в пространстве | 6 |
|
| Повторение | 6 | 1(итоговая) |