Никто не будет спорить с тем, что каждый учитель должен развивать логическое мышление обучающихся. Об этом говорится в методической литературе, в объяснительных записках к учебным программам. Однако, как это делать, учитель не всегда знает. Нередко это приводит к тому, что развитие логического мышления в значительной мере идет стихийно, поэтому большинство учащихся, даже старшеклассников, не овладевают начальными приемами логического мышления (анализ, сравнение, синтез, абстрагирование и др.).
Роль математики в развитии логического мышления исключительно велика. Причина столь исключительной роли математики в том, что это самая теоретическая наука из всех изучаемых в школе.
В ней высокий уровень абстракции и в ней наиболее естественным способом изложения знаний является способ восхождения от абстрактного к конкретному.
Как показывает опыт, в школьном возрасте одним из эффективных способов развития мышления является решение школьниками нестандартных логических задач.
Кроме того, решение нестандартных логических задач способно привить интерес ребенка к изучению «классической» математики. В этом отношении весьма характерен следующий пример.
Проблему внедрения в школьный курс математики логических задач не только исследовать в области педагогики и психологии, но и математики-методисты.
Педагогами неоднократно утверждалось, что развитие у детей логического мышления - это одна из важных задач начального обучения. Умение мыслить логически, выполнять умозаключения без наглядной опоры, сопоставлять суждения по определенным правилам - необходимое условие успешного усвоения учебного материала.
Основная работа для развития логического мышления должна вестись с задачей. Ведь в любой задаче заложены большие возможности для развития логического мышления. Нестандартные логические задачи - отличный инструмент для такого развития.
Существует значительное множество такого рода задач; особенно много подобной специализированной литературы быть выпущено в последние годы.
Однако наиболее часто наблюдается на практике? Учащимся предлагается задача, они знакомятся с ней и вместе с учителем анализируют условие и решают ее. Но извлекается из такой работы максимум пользы? Нет. Если дать эту задачу через день-два, то часть учащихся может вновь испытывать затруднения при решении.
Наибольший эффект при этом может быть достигнут в результате применения различных форм работы над задачей.
Это:
1. Работа над решенной задачей. Многие ученики только после повторного анализа осознают план решения задачи. Это путь к выработке твердых знаний по математике. Конечно, повторение анализа требует времени, но оно окупается.
2. Решение задач разными способами. Мало уделяется внимания решению задач разными способами в основном из-за нехватки времени. Но это умение свидетельствует о достаточно высоком математическом развитии. Кроме того, привычка нахождения другого способа решения сыграет большую роль в будущем. Но я считаю, что это доступно не всем ученикам, а тем, кто любит математику, имеет особые математические способности.
3. Правильно организованный способ анализа задачи - по вопросу или от данных к вопросу.
4. Представление ситуации, описанной в задаче (нарисовать "картинку"). Учитель обращает внимание детей на детали, которые нужно обязательно представить, а которые можно опустить. Мнимая участие в этой ситуации. Разбивка текста задачи на смысловые части. Моделирование ситуации с помощью чертежа, рисунка.
5. Самостоятельное составление задач учениками.
Составить задачу:
1) используя слова: больше на, столько,, меньше в, на столько больше, на столько меньше
2) решаемую в 1, 2, 3 действия
3) по данному ее плане решения, действиям и ответу
4) по выражению и т.д.
6. Решение задач с недостающими или лишними данными.
7. Изменение вопроса задачи.
8. Составление различных выражений по данным задачам и объяснение, что обозначает то или иное выражение. Выбрать те выражения, которые являются ответом на вопрос задачи.
9. Помощь готового решения задачи.
10. Использование приема сравнения задач и их решений.
11. Запись двух решений на доске - одного верного и другого неверных.