«Зимний фестиваль знаний 2025»

Урок в 9 классе по теме "Арифметическая прогрессия"

Разработка урока в 9 классе по алгебре по теме: "Арифметическая прогрессия" к учебнику Макарычева "Алгебра"

Олимпиады: ИЗО 1 - 7 классы

Содержимое разработки

Урок по алгебре в 9 классе.
Тема: "Арифметическая прогрессия. Формула (рекуррентная) n-го члена арифметической прогрессии".

Цели: ввести понятия арифметической прогрессии и разности арифметической прогрессии; вывести рекуррентную формулу п-го члена арифметической прогрессии; формировать умения нахождения разности и нескольких первых членов арифметической прогрессии по первому члену и разности, а также п-го члена по формуле.

Ход урока

I. Организационный момент.

II. Математический диктант.

Работа выполняется по вариантам (в квадратных скобках задание, относящееся ко второму варианту).

1) Является ли конечной или бесконечной последовательность делителей [кратных] числа 1200 [8]?

2) Является ли конечной или бесконечной последовательность кратных [делителей] числа 6 [2400]?

3) Последовательность задана формулой ап = 5п + 2 [bn = n2 – 3]. Запишите, чему равен ее 3-й член.

4) Запишите последний член последовательности всех трехзначных
[двухзначных] чисел.

5) Запишите рекуррентную формулу ап + 1 = ап – 4, где а1 = 5 [bn + 1 =
= , где b1 = 8]. Найдите а2 [b2].

О т в е т ы: 1) Конечной [Бесконечной].

2) Бесконечной [Конечной].

3) 17 [6].

4) 999 [99].

5) 1 [2].

II. Устная работа.

1-й б л о к. Актуализация знаний.

Назовите первые три члена последовательности:

а) an = ; б) bn = 3n – 1; в) сп = п2 + 1.

Для последовательности, заданной первым членом и рекуррентной формулой, найдите второй и третий члены:

г) x1 = 2, xп + 1 = ;

д) у1 = 3, уп + 1 = уп2 – 5.

2-й б л о к. Актуализация знаний и создание проблемной ситуации.

Задать последовательность с помощью формулы п-го члена или рекуррентной формулы.

Последовательность

Формула

а) –2; 0; 2; 4; …

х1 = –2; хп + 1 = хп + 2

б) –5; 5; –5; 5; …

хп = (–1)п · 5

в) 2; 2,5; 3; 3,5; 4; …

х1 = 2; хп + 1 = хп + 0,5

г) 1; 4; 9; 16; …

хп = п2

д) 1;

х1 = 2; хп + 1 =

е) 0; 10; 20; 30; 40; …

х1 = 0; хп + 1 = хп + 10

ж) а; а + 3; а + 6; а + 9; …

х1 = а; хп + 1 = хп + 3

После заполнения таблицы анализируем полученные результаты и замечаем, что последовательности а), в), е) и ж) – одинакового вида, а именно: задаются рекуррентным способом и каждый член, начиная со второго, получается прибавлением к предыдущему числа (2; 0,5; 10; 3).

Обучающиеся «открыли» определенный вид последовательности. Следует сказать, что такие последовательности называются «арифметическая прогрессия», и попросить обучающихся попробовать самостоятельно сформулировать определение такой прогрессии на основе выделенных ими характеристических свойств.

III. Объяснение нового материала.

1. Определение. Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом.

(ап) – арифметическая прогрессия, если для любого п N выполняется условие ап + 1 = ап + d, где d – некоторое число. Число d называется «разностью арифметической прогрессии», так как из определения следует, что ап + 1ап = d.

Далее следует привести примеры арифметических прогрессий, причем следует варьировать значение d (положительные числа; отрицательные; нуль; дробные).

П р и м е р ы арифметических прогрессий:

1) а1 = 1, d = 1.

1; 2; 3; 4; … (последовательность натуральных чисел).

2) а1 = 1, d = 2.

1; 3; 5; 6; … (последовательность положительных

нечетных чисел).

3) а1 = –2, d = –2.

–2; –4; –6; –8; –10; … (последовательность отрицательных

четных чисел).

4) а1 = 7, d = 0.

7; 7; 7; 7; … (постоянная последовательность).

5) а1 = 1, d = 0,3.

1; 1,3; 1,6; 1,9; 2,2; …

Обращаем внимание, что если d 0, то арифметическая прогрессия возрастающая, если d d = 0 – постоянная.

2. Итак, обучающиеся знают, что для того чтобы найти любой член арифметической прогрессии (или задать ее), достаточно знать ее первый член и разность. Следует подвести их к мысли, что это очень трудоемко, например:

(ап) – арифметическая прогрессия, где а1 = 2, d = 27. Найти сотый член.

Пользуясь определением, нам нужно сделать 100 шагов. Это громоздко. Хотелось бы знать формулу для нахождения любого члена арифметической прогрессии только по первому члену, разности и порядковому номеру искомого члена.

Для вывода формулы пользуемся определением арифметической прогрессии:

а1

а2 = а1 + d

а3 = а2 + d = (а1 + d) + d = а1 + 2d

а4 = а3 + d = (а1 + 2d) + d = а1 + 3d

а5 = а4 + d = (а1 + 3d) + d = а1 + 4d

а6 = … = а1 + 5d

… …

– формула п-го члена

арифметической прогрессии.

П р и м е р 1. (сп) – арифметическая прогрессия,

с1 = 0,62, d = 0,24; с50 –?

с50 = с1 + d (50 – 1) = 0,62 + 0,24 · 49 = 12,38.

Этот пример на «прямое» использование формулы п-го члена арифметической прогрессии.

П р и м е р 2. Выяснить, является ли число –122 членом арифметической прогрессии (хп):

23; 17,2; 11,4; 5,6; …

При рассмотрении этого примера пояснить, что для решения надо доказать, что существует п N, при котором будет верна формула п-го члена:

–122 = 23 + (п – 1) · (–5,8), где

–5,8 = 17,2 – 23 – разность арифметической прогрессии.

IV. Формирование умений и навыков.

Все задания, выполняемые обучающимися на этом уроке, можно разбить на 3 типа:

1) На «узнавание» арифметической прогрессии, определение ее первого члена и разности.

2) На нахождение п-го члена арифметической прогрессии по определению и по формуле.

3) На запись формулы п-го члена по первому члену и разности, решение задач на «косвенное» использование формулы п-го члена (например, нахождение п).

Упражнения:

1. Решить устно:

а) Является ли последовательность арифметической прогрессией:

–3,5; –7; –10,5; –14; –17,5; … (Да.)

5; 5; 5; 5; … (Да.)

2; 12; 22; 23; 32; … ? (Нет.)

б) Найти члены арифметической прогрессии, обозначенные буквами:

–10; –7; с3; с4; с5; с6

–3,4; –1,4; а3; а4

12; у2; 20; у4.

в) (ап) – арифметическая прогрессия. Является ли арифметической прогрессией последовательность:

12а1; 12а2; …; 12ап; …

3а1 + 1; 3а2 + 1; …; 12ап + 1; … ?

2. № 575 (а, б), № 576 (а, в, д). Самостоятельное решение с последующей проверкой.

№ 577. Решение у доски с объяснением.

№ 579. Самостоятельное решение и одновременно на скрытых досках с проверкой.

3. № 584. Задание на «не прямое» применение формулы. Еще раз подчеркнуть, что с помощью этой формулы можно находить следующие величины: ап; а1; d; п.

V. Итоги урока.

В о п р о с ы обучающимся:

– Что называется арифметической прогрессией?

– Как задается арифметическая прогрессия?

– Назовите формулу п-го члена арифметической прогрессии.

Домашнее задание: № 575 (в, г); № 576 (б, г, е); № 586; № 599.



Получите свидетельство о публикации сразу после загрузки работы



Получите бесплатно свидетельство о публикации сразу после добавления разработки


Олимпиады «Зимний фестиваль знаний 2025»

Комплекты учителю



Качественные видеоуроки, тесты и практикумы для вашей удобной работы

Подробнее

Вебинары для учителей



Бесплатное участие и возможность получить свидетельство об участии в вебинаре.


Подробнее