«Зимний фестиваль знаний 2025»

Рабочая программа по алгебре для 7 класса (профиль)

Рабочая программа (пояснительная записка и тематическое планирование) по алгебре для 7 класса к УМК С.М. Никольского и др (ФГОС)

Олимпиады: Дошкольникам "В поисках приключений"

Содержимое разработки


Пояснительная записка

Цели и задачи обучения


Обучение алгебре на профильном уровне в 7 В классе направлено на достижение следующих целей:

В направлении личностного развития:

  • формирование представлений об алгебре как части математики, части общечеловеческой культуры, о значимости алгебры в развитии цивилизации и современного общества;

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и математических способностей.

В метапредметном направлении:

  • развитие представлений об алгебре как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

В предметном направлении:

  • овладение алгебраическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. Сами объекты математических умозаключений и приняты е в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся.


Рабочая программа по алгебре для 7 В класса составлена в соответствии с Федеральным государственным образовательным стандартом основного общего образования второго поколения, на основе примерной Программы основного общего образования по математике, рабочей программы автора С.М.Никольского и др. и УМК С.М.Никольского и др. «Алгебра, 7 класс».

Условия реализации программы


Учебные пособия:

- Дидактические материалы, сборники самостоятельных и контрольных работ;

- Научно-популярная, справочная, историческая литература;

- Методические пособия для учителей;

- Таблицы и плакаты по алгебре для 7 класса;

- Портреты выдающихся математиков;

- Материалы единых коллекций ЦОР http://school-collection.edu.ru; http://fcior.edu.ru


Литература для учащихся

  1. Алгебра. 7 класс: учебник для общеобразовательных организаций/С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин. – М.: Просвещение, 2013


Литература для учителя

  1. Алгебра. Сборник рабочих программ. 7-9 классы: пособие для учителей общеобразовательных организаций/ сост. Бурмистрова Т.А. – М.: Просвещение, 2014 г.

  2. Алгебра. 7 класс: учебник для общеобразовательных организаций/С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин. – М.: Просвещение, 2013

  3. М.К. Потапов. Алгебра, 7 кл.: дидактические материалы/ М.К. Потапов, А.В. Шевкин– М.: Просвещение, 2014

  4. П.В. Чулков Алгебра, 7 кл.: тематические тесты/ П.В. Чулков. – М.: Просвещение, 2012

  5. М.К. Потапов. Алгебра, 7 кл.: методические рекомендации/ М.К. Потапов, А.В. Шевкин– М.: Просвещение, 2013


Планируемые результаты изучения учебного предмета


Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

  • сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  • сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

  • сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, проектно-исследовательской, творческой и других видах деятельности;

  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  • представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  • креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;

  • умение контролировать процесс и результат учебной математической деятельности;

  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.


метапредметные:

  • умение выбирать наиболее эффективные способы решения учебных и познавательных задач;

  • умение осуществлять контроль по результату и по способу действия и вносить необходимые коррективы;

  • умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

  • умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

  • умение создавать и применять модели и схемы для решения учебных и познавательных задач;

  • умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  • умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

предметные:

  • умение работать с математическим текстом (извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, обосновывать суждения, проводить классификацию, доказывать математические утверждения;

  • владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры;

  • умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

  • умение пользоваться математическими формулами;

  • умение решать линейные уравнения, системы уравнений; применять полученные умения для решения задач из математики, смежных предметов, практики.


В результате изучения алгебры в 7 В классе обучающиеся

научатся:

  • понимать особенности десятичной системы счисления;

  • владеть понятиями, связанными с делимостью натуральных чисел;

  • выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

  • сравнивать и упорядочивать рациональные числа;

  • выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;

  • использовать начальные представления о множестве действительных чисел;

  • использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

  • владеть понятиям и «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

  • выполнять преобразования выражений, содержащих степени с целыми показателями;

  • выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

  • выполнять разложение многочленов на множители.

  • решать линейные уравнения с одной переменной, системы двух уравнений с двумя переменными;

  • понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;


получат возможность:

  • углубить и развить представления о натуральных числах и свойствах делимости;

  • научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

  • развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

  • развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

  • понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

  • понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

  • научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

  • овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики.


Описание места учебного предмета в учебном плане


На изучение учебного предмета «Алгебра» в 7 классе отводится 4 часа в неделю, 34 учебные недели, всего – 136 часов в течение года.

Тематическое планирование учебного материала

Промежуточная аттестация проходит в виде самостоятельных работ, письменных тестов, математических диктантов, устных и письменных опросов по теме урока, контрольных работ по разделам учебника.


Запланировано контрольных работ - 7


Общая характеристика учебного предмета


Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

Алгебра является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении алгебре способствует усвоению предметов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой и профессиональной подготовки школьников.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, алгебра развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Изучение алгебры позволяет формировать умения и навыки умственного труда - планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов. В процессе изучения алгебры школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.


В курсе алгебры 7 класса можно выделить следующие основные содержательные линии: арифметика; алгебра. Наряду с этим в содержание включены два дополнительных методологических раздела: множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. При этом первая линия служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая - способствует созданию общекультурного, гуманитарного фона изучения курса.

Содержание линии «Арифметика» служит базой для дальнейшего изучения учащимися алгебры, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе.

Содержание линии «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разделов математики, смежных предметов и окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей процессов и явлений реального мира.

Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений также являются задачами изучения алгебры. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству.


Содержание учебного предмета

АРИФМЕТИКА

Рациональные числа. Расширение множества натуральных чисел до множества целых. Множества целых чисел до множества рациональных. Рациональное число как отношение , где m - целое число, n - натуральное. Степень с целым показателем.

Действительные числа. Понятие об иррациональном числе. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел.

Координатная прямая. Изображение чисел точками координатной прямой.

Измерения, приближения, оценки. Приближённое значение величины, точность приближения. Прикидка и оценка результатов вычислений.

АЛГЕБРА

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и её свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности, разность квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства.

Рациональные выражения и их преобразования. Доказательство тождеств.

Уравнения. Уравнение с одной переменной. Корень уравнения. Равносильность уравнений.

Линейное уравнение. Уравнение с двумя переменными. Линейное уравнение с двумя переменными.

Система уравнений с двумя переменными. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением.

Решение текстовых задач алгебраическим способом.

МНОЖЕСТВА

Теоретико-множественные понятия. Множество, элемент множества. Стандартные обозначения числовых множеств.

Календарно-тематическое планирование

Тема урока


Кол-во часов

Характеристики деятельности

Используемые ЭОР

Планируемые результаты

Дата

Предметные

Метапредметные

Личностные

Глава 1. Действительные числа

§1. Натуральные числа

Натуральные числа и действия с ними

1

Выполнять элементарные знаково- символические действия, применять буквы для обозначения чисел, для записи общих утверждений. Вычислять числовое значение буквенного выражения


Систематизировать знания о натуральных чисел и действиях с ними. Сформулировать признаки делимости. Научиться выполнять вычисления, применяя признаки делимости

Регулятивные: учитывать правило в планировании и контроле способа решения;

Познавательные: осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы;

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Формирование стартовой мотивации к обучению



Степень числа

1

Формулировать определение степени с натуральным показателем, с нулевым показателем; формулировать, записывать в символической форме и обосновывать свойства степени с целым неотрицательным показателем; применять свойства степени для преобразования выражений и вычислений. Воспроизводить формулировки определений, конструировать несложные определения самостоятельно. Раскладывать натуральные числа на простые множители.


ЕКЦОР: Новый материал. Степень с натуральным показателем

Познакомиться с понятиями степень, основание степени, показатель степени, со свойствами степеней. Научиться возводить числа в степень, заполнять и оформлять таблицы степеней, представлять число в виде произведения степеней, находить значения сложных выражений со степенями, применяя свойства степеней

Р: различат способ и результат действия;

П: ориентироваться на разнообразие способов решения задач;

К: контролировать действие партнера

Формирование познавательного интереса к изучению нового


Простые и составные числа.

1

ФЦОР: Простые и составные числа

Познакомиться с понятием простого и составного числа. Сформулируют теорему о простых числах.

Научиться определять простые и составные числа, приводить примеры простых и составных чисел

Р: ставить учебную задачу на основе соотнесения того, что уже известно и усвоено, и того, что еще неизвестно;

П: осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы;

К: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Формирование желания приобретать новые знания, умения, совершенствовать имеющиеся


Разложение натуральных чисел на простые множители

1


Познакомиться с понятием разложения на простые множители. Сформулируют основную теорему арифметики. Научиться раскладывать числа на простые множители

Р: составлять план выполнения заданий совместно с учителем;

П: передавать содержание в сжатом (развернутом) виде;

К: слушать и слышать собеседника, вступать с ним в учебный диалог

Формирование устойчивой мотивации к изучению и закреплению нового


§2. Рациональные числа

Обыкновенные дроби. Конечные десятичные дроби.

1

Анализировать и осмысливать текст задачи, переформулировать условие, дроби. извлекать необходимую информацию, моделировать условие в виде схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлятьсамоконтроль проверяя ответ на соответствие условию. Формулировать определения делителя и кратного, простого числа и составного числа, свойства и признаки делимости. Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от деления на 3 и т.п.) Исследовать простейшие числовые закономерности, проводить числовые эксперименты.


Познакомиться с понятиями рациональные числа, десятичное разложение дроби, конечная десятичная дробь.

Научиться сокращать дроби, проверять несократимость дроби, записывать любое рациональное число в виде конечной десятичной дроби и наоборот

Р: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки;

П: выделять и формулировать проблему; строить логические цепочки рассуждений

К: контролировать действие партнера

Формирование целевых установок учебной деятельности


Разложение обыкновенной дроби в конечную десятичную дробь.

1

ФЦОР: Представление десятичной дроби в виде обыкновенной и обыкновенной дроби в виде десятичной. П2

Познакомиться с понятием вертикальные углы. Научиться применять на практике свойство вертикальных углов с доказательством, изображать вертикальные углы, находить на рисунке вертикальные углы, решать простейшие задачи по теме

Р: составлять план и последовательность действий; предвосхищать временные характеристики достижения результата;

П: владеть общим приемом решения задач;

К: договариваться и приходить к общему решению в совместной деятельности, в т.ч. в ситуации столкновения интересов


Формирование навыков организации и анализа своей деятельности в составе группы


Периодические десятичные дроби

1


Познакомиться с понятиями периодической дроби, периодом дроби.


Р: обнаруживать и формулировать учебную проблему совместно с учителем;

П: владеть общим приемом решения задач;

К: вступать в диалог, участвовать в коллективном обсуждении проблем

Формирование устойчивой мотивации к изучению и закреплению нового


Периодичность десятичного разложения обыкновенной дроби

1


Научиться представлять обыкновенную дробь в виде периодической дроби, подбирать обыкновенную дробь, равную периодической

Р: обнаруживать и формулировать учебную проблему совместно с учителем;

П: владеть общим приемом решения задач;

К: вступать в диалог, участвовать в коллективном обсуждении проблем

Формирование навыков самоанализа и самоконтроля


Десятичное разложение рациональных чисел.

2


Научиться сравнивать рациональные числа, выполнять арифметические действия с ними, записывать рациональные числа в виде периодических дробей

Р: различать способ и результат действия;

П: выбирать наиболее эффективные способы решения задач;

К: договариваться и приходить к общему решению в совместной деятельности, в т.ч. в ситуации столкновения интересов



§3. Действительные числа

Иррациональные числа

1

Формулировать, записывать с помощью букв основное свойство обыкновенной дроби, правила действий с обыкновенными дробями. Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. Выполнять вычисления с обыкновенными дробями с одинаковыми знаменателями. Читать и записывать десятичные дроби, представлять обыкновенные дроби в виде десятичных и десятичных в виде обыкновенных; находить десятичное приближение обыкновенных дробей. Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях. Выполнять прикидку и оценку в ходе вычисления. Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их. Приводить примеры использования отношений на практике. Решать задачи на проценты и дроби (в том числе и задачи из реальной практики), используя при необходимости калькулятор; использовать понятия отношения и пропорции при решении задач.

ФЦОР: Рациональные и иррациональные числа. И1

Познакомятся с понятием иррациональное число. Научиться доказывать иррациональность чисел, классифицировать числа по заданным множествам

Р: самостоятельно формулировать познавательную цель и строить действия в соответствии с ней;

П: передавать содержание в сжатом (развернутом) виде;

К: адекватно использовать речевые средства для дискуссии и аргументации своей позиции

Формирование устойчивой мотивации к проблемно-поисковой деятельности


Понятие действительного числа

1


Познакомиться с понятиями действительное число, абсолютная величина (модуль). Научиться находить абсолютную величину числа, определять противоположные числа?

Р: обнаруживать и формулировать учебную проблему совместно с учителем;

П: выбирать смысловые единицы текста и устанавливать отношения между ними;

К: слушать и слышать собеседника, вступать с ним в учебный диалог

Формирование желания осваивать новые виды деятельности, участвовать в творческом, созидательном процессе


Сравнение действительных чисел.

1


Сформулировать правила сравнения действительных чисел. Научиться объяснять верность неравенства, не выполняя вычислений; сравнивать числа

Р: составлять план выполнения заданий совместно с учителем;

П: делать предположения об информации, которая нужна для решения предметной учебной задачи;

К: уметь (развивать способности) брать на себя инициативу в организации совместных действий

Формирование положительного отношения к учению, желанию приобретать новые знания, умения


Основные свойства действительных чисел

2


Систематизировать знания о свойствах чисел. Научиться проверять верность равенства и неравенства с помощью основных свойств действительных чисел

Р: различать способ и результат действия;

П: владеть общим приемом решения задач;

К: представлять конкретное содержание и сообщать его в письменной и устной форме

Формирование навыка осознания своих трудностей и стремления к их преодолению


Приближения чисел.

2


Познакомиться с приближенным значением по недостатку, по избытку, при округлении чисел. Научиться использовать знания о приближенном значении по недостатку, по избытку, округлении чисел при решении учебных задач

Р: в диалоге с учителем совершенствовать критерии оценки и пользоваться ими в ходе оценки и самооценки;

П: сопоставлять и отбирать информацию, полученную из разных источников;

К: уметь устанавливать и сравнивать разные точки зрения, прежде чем принимать решение и делать выбор

Формирование потребности приобретения мотивации к процессу образования


Длина отрезка

1

ЕКЦОР: Измерение длина отрезка с помощью

линейки

Научиться определять на глаз параметры предметов, измерять отрезок единичным отрезком

Р: обнаруживать и формулировать учебную проблему совместно с учителем;

П: владеть общим приемом решения задач;

К: вступать в диалог с учителем, участвовать в коллективном обсуждении проблемы

Формирование устойчивой мотивации к изучению и закреплению нового


Координатная ось

1


Научиться показывать числа на числовой прямой

Р: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки;

П: выявлять особенности (качества, признаки) разных объектов в процессе их рассматривания;

К: контролировать действие партнера

Формирование навыков анализа, творческой инициативности и активности


Контрольная работа № 1 по теме «Действительные числа»

1


Научиться применять теоретический материал, изученный на предыдущих уроках, на практике

Р: оценивать достигнутый результат;

П: выбирать наиболее эффективные способы решения задачи;

К: регулировать собственную деятельность посредством письменной речи

Формирование навыков самоанализа и самоконтроля







Дополнения к главе 1


4

Формулировать, записывать с помощью букв свойства делимости


Научиться применять свойства и признаки делимости, алгоритм Евклида нахождения НОД

Формирование желания осваивать новые виды деятельности, участвовать в творческом, созидательном процессе


Глава 2. Алгебраические выражения.

§4. Одночлены

Числовые выражения

1

Выполнять элементарные знаково- символические действия: применять буквы для обозначения чисел, для записи общих утверждений; Формулировать, записывать в символической форме и обосновывать свойства степени с натуральным показателем, применять свойства степени для преобразования выражений и вычислений. Выполнять действия с одночленами.

ЕКЦОР: Числовые выражения

Познакомиться с понятиями числовое выражение, значение числового выражения. Научиться находить значение числового выражения при решении текстовых задач

Р: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки;

П: ориентироваться на разнообразие способов решения задач;

К: контролировать действие партнера

Формирование навыка осознанного выбора наиболее эффективного способа решения


Буквенные выражения

1

ЕКЦОР: Лекция по теме: «Буквенные выражения. Значения буквенных выражений»

Сформулировать понятие буквенного выражения. Научиться выполнять числовые подстановки в буквенные выражения и находить числовые значения

Р: вносить коррективы и дополнения в составленные планы;

П: выбирать смысловые единицы текста и устанавливать отношения между ними;

К: контролировать действие партнера

Формирование навыков работы по алгоритму


Понятие одночлена

1

Презентация

Познакомиться с понятиями одночлен, нулевой одночлен. Сформулировать свойства одночленов. Научиться определять числовую и буквенную часть одночлена, упрощать запись одночлена

Р: составлять план выполнения задач; решения проблем творческого и поискового характера;

П: преобразовывать модели с целью выявления общих законов, определяющих предметную область;

К: определять цели и функции участников, способы взаимодействия

Формирование навыков составления алгоритма выполнения задания, навыков выполнения творческого задания


Произведение одночленов

2


Сформулировать правило умножения степени одной и той же переменной, возведения в степень переменной, свойства одночленов. Научиться записывать одночлен, противоположный данному, упрощать запись одночленов, используя степень

Р: определять цель учебной деятельности с помощью учителя и самостоятельно, искать средства ее осуществления;

П: создавать структуру взаимосвязей смысловых единиц текста;

К: аргументировать свою точку зрения, спорить и отстаивать свою позицию невраждебным для оппонентов способом

Формирование навыков составления алгоритма выполнения задания, навыков выполнения творческого задания


Стандартный вид одночлена

2

ЕКЦОР: записываем одночлены в стандартном виде

Сформулировать понятие одночлена стандартного вида. Научиться указывать коэффициент и степень одночлена, записанного в стандартном виде, приводить одночлены к стандартному виду

Р: определять последовательность промежуточных целей с учетом конечного результата;

П: выделять обобщенный смысл и формальную структуру задачи;

К: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Формирование навыков организации анализа своей деятельности


Подобные одночлены

2


Познакомиться с понятием подобные одночлены. Научиться находить подобные одночлены среди приведенных, вычислять сумму и разность подобных одночленов

Р: осуществлять пошаговый и итоговый контроль по результату;

П: владеть общим приемом решения задач;

К: обмениваться знаниями между членами группы для принятия эффективных совместных решений

Формирование умения нравственно-этичес-кого оценивания усваиваемого материала


§5. Многочлены

Понятие многочлена

1

Выполнять действия с многочленами. Доказывать формулы сокращённого умножения. Применять их для преобразования выражений, доказательства тождеств, разложения многочленов на множители и в вычислениях. Находить числовое значение буквенного выражения при заданных значенияхбукв. Доказывать тождества. Выполнять преобразования рациональных выражений в соответствии с поставленной целью: выделять квадрат двучлена. Применять преобразования рациональных выражений для решения задач.


Получить представление о многочлене, полиноме. Научиться приводить примеры многочленов, выписывать члены многочлена по заданному правилу

Р: вносить необходимые коррективы в действие после его завершения на основе его и учета характера сделанных ошибок;

П: ориентироваться на разнообразие способов решения задач

К: контролировать действие партнера

Формирование устойчивой мотивации к изучению и закреплению нового


Свойства многочленов

2

Презентация

Сформулировать свойства многочленов. Научиться применять свойства многочленов к упрощению выражений

Р: различать способ и результат действия;

П: выбирать смысловые единицы текста и устанавливать отношения между ними;

К: договариваться и приходить к общему решению в совместной деятельности, в т.ч. в ситуации столкновения интересов

Формирование устойчивой мотивации к проблемно-поисковой деятельности


Многочлены стандартного вида

2


Познакомиться с понятием многочлена стандартного вида. Научиться приводить сложный многочлен к стандартному виду, определять степень многочлена

Р: вносить необходимые коррективы в действие после его завершения на основе его и учета характера сделанных ошибок;

П: владеть общим приемом решения задач;

К: договариваться и приходить к общему решению в совместной деятельности, в т.ч. в ситуации столкновения интересов

Формирование устойчивой мотивации к изучению и закреплению нового


Сумма и разность многочленов

2

ФЦОР: Понятие многочлена. Стандартный вид многочлена. Сложение и вычитание многочленов. П1

Сформулировать правило раскрытия скобок, правило заключения в скобки. Научиться находить сумму и разность многочленов, раскрывать скобки, преобразовывать выражение в многочлен стандартного вида

Р: сличать способ и результат своих действий с заданным эталоном, обнаруживать отклонения и делать выбор;

П: выдвигать и обосновывать гипотезы, предлагать способы их проверки;

К: устанавливать и сравнивать разные точки зрения, прежде чем принимать решение и делать выбор

Формирование умения нравственно-этического оценивания усваиваемого материала


Произведение одночлена и многочлена

2


Сформулировать правило умножения одночлена на многочлен. Научиться выполнять умножение одночлена на многочлен, выносить за скобки общий множитель

Р: устанавливать причинно-следственные связи; строить логические цепочки рассуждений;

П: оценивать весомость приводимых рассуждений;

К: развивать способность с помощью вопросов добывать недостающую информацию; слушать и слышать друг друга

Формирование потребности приобретения мотивации к процессу образования


Произведение многочленов

3


Сформулировать правило умножения многочленов. Научиться выполнять умножение многочленов, раскладывать многочлен на множители

Р: составлять план выполнения задач; решения проблем творческого и поискового характера;

П: преобразовывать модели с целью выявления общих законов, определяющих предметную область;

К: определять цели и функции участников, способы взаимодействия

Формирование желания осознавать свои трудности и стремиться к их преодолению


Целые выражения

2


Познакомиться с понятием целого выражения. Научиться упрощать выражения, преобразовывать в многочлен стандартного вида, определять его степень

Р: учитывать правило в планировании и контроле способа решения;

П: выделять количественные характеристики объектов, заданные словами;

К: обмениваться знаниями между членами группы для принятия эффективных совместных действий

Формирование устойчивой мотивации к проблемно-поисковой деятельности


Числовое значение целого выражения

2


Научиться вычислять значение числового выражения, предварительно упростив целое выражение

Р: выделять и осознавать то, что уже усвоено и что еще подлежит усвоению, осознавать качество и уровень усвоения;

П: выделять обобщенный смысл и формальную структуру задачи;

К: планировать общие способы работы

Формирование умения контролировать процесс и результат деятельности


Тождественное равенство целых выражений

1


Познакомиться с определениями тождества, тождественно равных выражений.
Научиться
доказывать простейшие тождества

Р: осознавать качество и уровень усвоения;

П: уметь выводить следствия из имеющихся в условии задачи данных;

К: договариваться и приходить к общему решению в совместной деятельности, в т.ч. в ситуации столкновения интересов

Формирование навыка осознанного выбора наиболее эффективного способа решения





Контрольная работа № 2 по теме «Многочлены»

1


Научиться применять теоретический материал, изученный на предыдущих уроках, на практике

Р: оценивать достигнутый результат;

П: выбирать наиболее эффективные способы решения задачи;

К: регулировать собственную деятельность посредством письменной речи

Формирование навыков самоанализа и самоконтроля


§6. Формулы сокращенного умножения


Квадрат суммы

2

ЕКЦОР: Квадрат суммы

Научиться выявлять проблемные зоны в изученной теме и проектировать способы их восполнения. Сформулировать формулу квадрата суммы. Научиться выводить формулу квадрата суммы; преобразовывать в многочлен стандартного вида с помощью этой формулы, представлять многочлен в виде квадрата суммы

Р: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки;

П: анализировать условия и требования задачи;

К: организовывать учебное взаимодействие в группе, строить конструктивные взаимоотношения со сверстниками

Формирование навыков организации анализа своей деятельности


Квадрат разности

2

ЕКЦОР:

Сформулировать формулу квадрата разности. Научиться выводить формулу квадрата разности; преобразовывать в многочлен стандартного вида с помощью этой формулы, представлять многочлен в виде квадрата разности

Р: учитывать правило в планировании и контроле способа решения;

П: осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы

К: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Формирование устойчивой мотивации к изучению и закреплению нового


Выделение полного квадрата

2

ЕКЦОР: полный квадрат (игра)

Познакомиться с правилом выделения полного квадрата. Научиться выделять полный квадрат из многочлена, доказывать верность неравенств

Р: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки;

П: выбирать смысловые единицы текста
и устанавливать отношения между ними;

К: уметь с достаточной полнотой и точностью выражать свои мысли с задачами и условиями коммуникации

Формирование навыков организации своей деятельности в составе группы


Разность квадратов

2


Сформулировать формулу разности квадратов. Научиться выводить формулу разности квадратов; упрощать выражения с помощью формулы разности квадратов, раскладывать многочлен на множители

Р: различать способ и результат действия;

П: сопоставлять и отбирать информацию, полученную из разных источников;

К: понимать возможность существования различных точек зрения, не совпадающих с собственной; критично относиться к своему мнению

Формирование устойчивой мотивации к изучению и закреплению нового


Сумма кубов

2


Познакомиться с формулой суммы кубов. Научиться указывать полные и неполные квадраты разности; записывать выражение в виде многочлена; представлять выражение в виде степени с показателем 3

Р: осуществлять итоговый и пошаговый контроль по результату;

П: проводить сравнение и классификацию по заданным критериям;

К: договариваться и приходить к общему решению в совместной деятельности, в т.ч. в ситуации столкновения интересов

Формирование навыков организации анализа своей деятельности


Разность кубов

2

ЕКЦОР: Сумма и разность кубов

Познакомиться с формулой разности кубов. Научиться записывать и читать формулу разности кубов; записывать выражение в виде многочлена; представлять выражение в виде степени с показателем 3

Р: работать по составленному плану; использовать дополнительные источники информации;

П: ориентироваться на разнообразие способов решения задач;

К: обмениваться знаниями между членами группы для принятия совместных эффективных решений

Формирование познавательного интереса к предмету исследования


Куб суммы

2


Познакомиться с формулами куба суммы и разности. Научиться записывать и читать формулы; записывать выражение в виде многочлена; представлять выражение в виде степени с показателем 3

Формирование навыка осознанного выбора наиболее эффективного способа решения





Куб разности

2



Применение формул сокращенного умножения

3


Познакомиться с областью применения формул сокращенного умножения. Научиться преобразовывать выражение в многочлен, упрощать выражения

Р: различать способ и результат действия;

П: владеть общим приемом решения задач;

К: договариваться и приходить к общему решению в совместной деятельности, в т.ч. в ситуации столкновения интересов

Формирование навыка осознанного выбора наиболее эффективного способа решения


Разложение многочлена на множители

3

ЕКЦОР: Многочлены (игра)

Научиться выполнять разложение многочленов на множители с помощью комбинации изученных приемов для упрощения вычислений, выбирать наиболее рациональный способ разложения многочлена на множители

Р: работать по составленному плану; использовать его наряду с основными и дополнительными средствами;

П: самостоятельно создавать алгоритмы деятельности при решении проблем творческого и поискового характера;

К: проявлять учиться управлять поведением партнера – убеждать его, контролировать, корректировать и оценивать его действия

Формирование навыка осознанного выбора наиболее эффективного способа решения


Контрольная работа № 3 по теме «Формулы сокращенного умножения»

1


Научиться применять теоретический материал, изученный на предыдущих уроках, на практике

Р: оценивать достигнутый результат;

П: выбирать наиболее эффективные способы решения задачи;

К: регулировать собственную деятельность посредством письменной речи

Формирование навыков самоанализа и самоконтроля


§7. Алгебраические дроби

Алгебраические дроби и их свойства

3

Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей. Выполнять действия с алгебраическими дробями; представлять целое выражение в виде алгебраической дроби.


Научиться выявлять проблемные зоны в изученной теме и проектировать способы их восполнения. Познакомиться с понятием алгебраической дроби и ее основными свойствами. Научиться составлять алгебраические дроби из данных выражений, записывать алгебраическую дробь в виде многочлена, сокращать дроби

Р: в диалоге с учителем совершенствовать критерии оценки и пользоваться ими в ходе оценки и самооценки;

П: устанавливать причинно-следствен-
ные связи;

К: брать на себя инициативу в организации совместного действия

Формирование навыков организации анализа своей деятельности


Приведение алгебраических дробей к общему знаменателю

3

Презентация

Познакомиться с правилом приведения дробей к общему знаменателю. Научиться преобразовывать пары алгебраических дробей к дроби с одинаковыми знаменателями

Р: составлять план выполнения заданий совместно с учителем;

П: выражать структуру задачи разными средствами;

К: понимать возможность существования различных точек зрения, не совпадающих с собственной; уметь устанавливать и сравнивать разные точки зрения, прежде чем принимать решение и делать выбор

Формирование положительного отношения к учению, познавательной деятельности, желанию приобретать новые знания, умения, совершенствовать имеющиеся


Арифметические действия над алгебраическими дробями

4


Научиться складывать и вычитать алгебраические дроби, умножать и делить алгебраические дроби

Р: определять цель учебной деятельности, осуществлять поиск ее достижения;

П: осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы

К: взглянуть на ситуацию с иной позиции и договориться с людьми иных позиций

Формирование устойчивой мотивации к проблемно-поисковой деятельности, осознания своих трудностей и стремления к их преодолению


Рациональные выражения

3


Познакомиться с понятием рационального выражения. Научиться выполнять преобразования рациональных выражений, используя все действия с алгебраическими дробями

Р: оценивать достигнутый результат;

П: выполнять учебные задачи, не имеющие однозначного решения;

К: уважительно относиться к позиции другого

Формирование положительного отношения к учению, желания приобретать новые знания, умения


Числовое значение рационального выражения

3


Познакомиться с понятием числового выражения рационального выражения. Научиться соблюдать алгоритм вычислений, находить значения, находить значения, при которых дробь равна нулю, при которых дробь не существует, упрощать рациональное выражение

Р: предвосхищать результат и уровень усвоения (отвечать на вопрос «какой будет результат?»);

П: ориентироваться на разнообразие способов решения задач;

К: делать предположения об информации, которая нужна для решения учебной задачи

Формирование устойчивой мотивации к изучению и закреплению нового


Тождественное равенство рациональных выражений

1


Познакомиться с понятиями тождество, тождественно равные рациональные выражения. Научиться доказывать простейшие тождества

Р: учитывать правило в планировании и контроле способа решения;

П: осуществлять синтез как составление целого из частей;

К: уметь взглянуть на ситуацию с иной позиции и договориться с людьми иных позиций

Формирование навыков анализа, творческой инициативности и активности


Контрольная работа № 4 по теме «Алгебраические дроби»

1


Научиться применять теоретический материал, изученный на предыдущих уроках, на практике

Р: оценивать достигнутый результат;

П: выбирать наиболее эффективные способы решения задачи;

К: регулировать собственную деятельность посредством письменной речи

Формирование навыков самоанализа и самоконтроля


§8. Степень с целым показателем

Понятие степени с целым показателем

2

Формулировать определение степени с целым показателем, вычислять значения степеней с целым показателем. Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений. Находить, анализировать, сопоставлять числовые характеристики объектов окружающего мира. Использовать запись числа в стандартном виде для выражения размеров объектов


Познакомиться с понятиями степень с целым показателем, основание степени, показатель степени. Научиться возводить числа в степень с целым показателем, оформлять таблицы, представлять выражение в виде степени с целым показателем

Р: принимать познавательную цель, сохранять ее при выполнении учебных действий, регулировать весь процесс их выполнения и четко выполнять требования познавательной задачи;

П: выбирать наиболее эффективные способы решения задачи в зависимости от конкретных условий;

К: проявлять готовность адекватно реагировать на нужды других, оказывать помощь и эмоциональную поддержку партнерам

Формирование навыков организации анализа своей деятельности


Свойства степени с целым показателем

2

Презентация

Сформулировать правило умножения и деления степеней с одинаковым показателем, возведения степени в степень. Научиться применять свойства степеней для упрощения числовых и алгебраических выражений

Р: ставить учебную задачу на основе соотнесения того, что уже известно и усвоено, и того, что еще неизвестно;

П: самостоятельно создавать алгоритмы деятельности при решении проблем творческого и поискового характера;

К: понимать возможность существования различных точек зрения, не совпадающих с собственной; уметь устанавливать и сравнивать разные точки зрения, прежде чем принимать решение и делать выбор

Формирование положительного отношения к учению, познавательной деятельности, желанию приобретать новые знания, умения, совершенствовать имеющиеся


Стандартный вид числа

2

ЕКЦОР: Стандартный вид числа

Познакомиться со стандартным видом положительного числа, порядком чисел, записью чисел в стандартной форме. Научиться использовать знания о стандартном виде положительного числа, порядке чисел, записи чисел в стандартной форме при выполнении заданий

Р: вносить необходимые коррективы в действие после его завершения на основе его и учета характера сделанных ошибок;

П: осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы;

К: контролировать действие партнера

Формирование желания осознавать свои трудности и стремиться к их преодолению


Преобразование рациональных выражений

2


Научиться выполнять преобразование рационального выражения для его упрощения

Р: составлять план и последовательность действий; предвосхищать временные характеристики достижения результата;

П: владеть общим приемом решения задач;

К: договариваться и приходить к общему решению в совместной деятельности, в т.ч. в ситуации столкновения интересов

Формирование навыков организации и анализа своей деятельности в составе группы


Контрольная работа № 5 по теме «Степень с целым показателем»

1


Научиться применять теоретический материал, изученный на предыдущих уроках, на практике

Р: оценивать достигнутый результат;

П: выбирать наиболее эффективные способы решения задачи;

К: регулировать собственную деятельность посредством письменной речи

Формирование навыков самоанализа и самоконтроля


Дополнения к главе

2

Выполнять деление многочлена на многочлен уголком


Познакомиться с новыми понятиями. Научиться выполнять деление многочлена на многочлен.


Глава 3. Линейные уравнения

§9. Линейные уравнения с одним неизвестным

Уравнения первой степени с одним неизвестным

1

Проводить доказательные рассуждения о корнях познавать уравнения первой степени, линейные уравнения. Решать уравнения первой степени, линейные уравнения, а также уравнения, сводящиеся к ним. [Доказывать равносильность уравнений в простых случаях.] Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путём составления уравнения; решать составленное уравнение; интерпретировать результат.

ЕКЦОР: Подбор уравнения к схеме

Познакомиться с основными понятиями данной темы. Научиться составлять уравнение первой степени с одним неизвестным по его коэффициентам, решать простейшие уравнения

Р: различать способ и результат действия;

П: выбирать наиболее эффективные способы решения задач;

К: договариваться и приходить к общему решению в совместной деятельности, в т.ч. в ситуации столкновения интересов

Формирование положительного отношения к учению, познавательной деятельности


Линейные уравнения с одним неизвестным.

1


Познакомиться с понятиями линейного уравнения с одним неизвестным, равносильных уравнений. Научиться решать линейные уравнения с одним неизвестным

Р: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки;

П: анализировать условия и требования задачи;

К: организовывать учебное взаимодействие в группе, строить конструктивные взаимоотношения со сверстниками

Формирование устойчивой мотивации к проблемно-поисковой деятельности


Решение линейных уравнений с одним неизвестным

2


Научиться находить неизвестный компонент, решать линейные уравнения с одним неизвестным

Р: учитывать правило в планировании и контроле способа решения;

П: осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы

К: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Формирование устойчивой мотивации к изучению и закреплению нового


Решение задач с помощью линейных уравнений

3

ЕКЦОР: Подбор уравнения для решения текстовой задачи

Научиться составлять математическую модель реальной ситуации, решать текстовые задачи с помощью линейных уравнений

Р: адекватно оценивать свои достижения, осознавать возникающие трудности, искать их причины и пути преодоления;

П: анализировать объект, выделяя существенные и несущественные признаки;

К: контролировать действия партнера

Формирование познавательного интереса к предмету исследования


§10. Системы линейных уравнений

Уравнения первой степени с двумя неизвестными

1

Определять, является ли пара чисел решением водить примеры решений уравнений с двумя неизвестными. Решать задачи, алгебраической моделью которых является уравнение с двумя неизвестными, находить целые решения путём перебора. [Решать несложные линейные уравнения с двумя неизвестными в целых числах.] Решать системы двух линейных уравнений с двумя неизвестными.


Познакомиться с понятием уравнения первой степени с двумя неизвестными. Научиться составлять уравнения с заданными коэффициентами, определять, является ли пара чисел решением уравнения, выражать одну переменную через другую

Р: сличать способ и результат своих действий с заданным эталоном, обнаруживать отклонения и отличия от эталона;

П: передавать основное содержание в сжатом, выборочном или развернутом виде;

К: слушать и слышать собеседника, вступать с ним в учебный диалог

Формирование умения нравственно-этического оценивания усваиваемого материала


Системы двух уравнений первой степени с двумя неизвестными

1

Презентация

Познакомиться с понятиями система уравнений, решение системы уравнений. Научиться определять, является ли пара чисел решением системы уравнений

Р: различат способ и результат действия;

П: ориентироваться на разнообразие способов решения задач;

К: контролировать действие партнера

Формирование познавательного интереса к изучению нового


Способ подстановки

2


Познакомиться с алгоритмом решения системы линейных уравнений методом подстановки. Научиться решать системы двух линейных уравнений методом подстановки по алгоритму

Р: ставить учебную задачу на основе соотнесения того, что уже известно и усвоено, и того, что еще неизвестно;

П: осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы;

К: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Формирование желания приобретать новые знания, умения, совершенствовать имеющиеся


Способ уравнивания коэффициентов

2


Познакомиться с алгоритмом решения системы линейных уравнений методом уравнивания коэффициентов. Научиться решать системы двух линейных уравнений методом уравнивания коэффициентов по алгоритму

Р: вносить необходимые коррективы в действие после его завершения на основе его и учета характера сделанных ошибок;

П: владеть общим приемом решения задач;

К: договариваться и приходить к общему решению в совместной деятельности, в т.ч. в ситуации столкновения интересов

Формирование способности к волевому усилию в преодолении препятствий


Равносильность уравнений и систем уравнений

2


Познакомиться с понятием равносильности уравнений и систем уравнений. Научиться определять равносильность уравнений и систем уравнений

Р: определять цель учебной деятельности, осуществлять поиск ее достижения;

П: осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы

К: взглянуть на ситуацию с иной позиции и договориться с людьми иных позиций

Формирование устойчивой мотивации к проблемно-поисковой деятельности


Решение систем двух уравнений с двумя неизвестными

2


Научиться выбирать оптимальный способ решения системы уравнений с двумя неизвестными и решать их

Р: различать способ и результат действия;

П: владеть общим приемом решения задач;

К: договариваться и приходить к общему решению в совместной деятельности, в т.ч. в ситуации столкновения интересов

Формирование навыка осознанного выбора наиболее эффективного способа решения


О количестве решений системы двух уравнений первой степени с двумя неизвестными

1



Системы уравнений первой степени с тремя неизвестными

2



Решение задач при помощи систем уравнений первой степени

3


Научиться применять системы уравнений с двумя неизвестными при решении задач

Р: работать по составленному плану; использовать дополнительные источники информации;

П: ориентироваться на разнообразие способов решения задач;

К: обмениваться знаниями между членами группы для принятия совместных эффективных решений

Формирование навыка осознанного выбора наиболее эффективного способа решения


Контрольная работа № 6 по теме «Линейные уравнения»

1


Научиться применять изученный теоретический материал на практике

Р: оценивать достигнутый результат;

П: выбирать наиболее эффективные способы решения задачи;

К: регулировать собственную деятельность посредством письменной речи

Формирование навыков самоанализа и самоконтроля


Дополнения к главе 3

4



Познакомиться с понятием диофантова уравнения, методом Гаусса


Формирование навыка осознанного выбора наиболее эффективного способа решения


Повторение.

Действительные числа

1

Выполнять действия с многочленами. Доказывать формулы сокращённого умножения. Применять их для преобразования выражений, доказательства тождеств, разложения многочленов на множители и в вычислениях. Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей. Выполнять действия с алгебраическими дробями; представлять целое выражение в виде алгебраической дроби. Находить числовое значение буквенного выражения при заданных значениях букв.


Научиться выявлять проблемные зоны в изученном материале

Р: самостоятельно формулировать познавательную цель и строить действия в соответствии с ней;

П: выбирать смысловые единицы текста
и устанавливать отношения между ними;

К: уметь (развивать способности) брать на себя инициативу в организации совместных действий

Формирование навыков организации анализа своей деятельности


Алгебраические выражения

2


Научиться выявлять проблемные зоны в изученном материале

Р: вносить необходимые коррективы в действие после его завершения на основе его и учета характера сделанных ошибок;

П: владеть общим приемом решения задач;

К: договариваться и приходить к общему решению в совместной деятельности, в т.ч. в ситуации столкновения интересов

Формирование способности к волевому усилию в преодолении препятствий


Преобразование алгебраических выражений

2


Научиться выявлять проблемные зоны в изученном материале

Р: определять цель учебной деятельности, осуществлять поиск ее достижения;

П: осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы

К: взглянуть на ситуацию с иной позиции и договориться с людьми иных позиций

Формирование устойчивой мотивации к проблемно-поисковой деятельности


Степень с целым показателем

2


Научиться выявлять проблемные зоны в изученном материале

Р: учитывать правило в планировании и контроле способа решения

П: осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы

К: взглянуть на ситуацию с иной позиции и договориться с людьми иных позиций

Формирование навыков анализа, сопоставления, сравнения


Итоговая контрольная работа

1



Научиться применять изученный теоретический материал на практике

Р: оценивать достигнутый результат;

П: выбирать наиболее эффективные способы решения задачи;

К: регулировать собственную деятельность

Формирование навыков самоанализа и самоконтроля




7



Получите свидетельство о публикации сразу после загрузки работы



Получите бесплатно свидетельство о публикации сразу после добавления разработки


Олимпиады «Зимний фестиваль знаний 2025»

Комплекты учителю



Качественные видеоуроки, тесты и практикумы для вашей удобной работы

Подробнее

Вебинары для учителей



Бесплатное участие и возможность получить свидетельство об участии в вебинаре.


Подробнее